
Clinic App Report

Phase 1 of the Project - Advanced
Programming Course 21060

Keivan Jamali 99104468 | Nassrin Sharifi 99104779
Erfan Bidmeshki 401103933

GitHub Repository
22/1/2024

https://github.com/KeivanJamali/Advanced_Programming_Clinic

CONTENTS CONTENTS

Contents
1 Introduction 2

2 DataBase 3

3 app.py 5

4 user.py 6

5 customer.py | patient.py 6

6 secretary.py | doctor.py | clinic.py 8

7 appointment.py | availability.py 9

AP Clinic App Report 1

1 INTRODUCTION

1 Introduction
In the first chapters, our heroes defined the central players - the User, Clinic, Ap-
pointment and more that would embark on adventures together. Sketches and
schematics in hand, they began mapping relations between characters. Meanwhile,
others prepared the stage, designing sturdy tables to safely hold details as the plot
thickened.

Now we approach pivotal scenes where limitations are tested and functions
formed. Primary users log in to begin their journeys, while assistants encounter
tailored menus for their roles. Through it all, an API provides vital support, ensur-
ing times remain true to real clinics.

Of course, such an epic undertaking requires the steeliest of managers. Tasks
are portioned according to the sacred Fibonacci pattern, and codes are firmly tied
to their duties on our quest board. Each new build promises richer experiences for
all involved.

Stay tuned, curiouscrew, for more installments from this lively production! Our
troupe works with dedication to deliver quality care - and a ripping good yarn - for
their audiences. This writer looks forward to sharing their further adventures!
All the project is available on GitHub repository. you can follow us there.

Figure 1: Class Diagram

AP Clinic App Report 2

https://github.com/KeivanJamali/Advanced_Programming_Clinic

2 DATABASE

2 DataBase
1. user_table:

• user_id (primary key): A unique identifier for each user.

• first_name: The first name of the user.

• last_name: The last name of the user.

• email: The email address of the user, which must be in a valid format.

• phone_number: The phone number of the user, which must consist of
numeric digits and be unique.

• password: The password of the user, which must not be empty.

• user_type: The type of user, which must not be empty.

2. clinic_table:

• clinic_id (primary key): A unique identifier for each clinic.

• clinic_name: The name of the clinic, which must be unique.

• address: The address of the clinic.

• secretary_phone_number: The phone number of the clinic’s secretary,
which must consist of numeric digits.

3. doctor_table:

• doctor_id (primary key): A unique identifier for each doctor.

• phone_number: The phone number of the doctor, which must consist of
numeric digits and be unique.

• first_name: The first name of the doctor.

• last_name: The last name of the doctor.

4. patient_table:

• patient_id (primary key): A unique identifier for each patient.

• phone_number: The phone number of the patient, which must consist of
numeric digits and be unique.

• first_name: The first name of the patient.

• last_name: The last name of the patient.

• birthdate: The birthdate of the patient.

• national_code: The national code of the patient, which must consist of
numeric digits and be unique.

AP Clinic App Report 3

2 DATABASE

• email: The email address of the patient, which must be in a valid format.

5. calendar_table:

• calendar_id (primary key): A unique identifier for each appointment.
• doctor_id (foreign key): References the doctor_table to identify the

doctor associated with the appointment.
• clinic_id (foreign key): References the clinic_table to identify the

clinic where the appointment is scheduled.
• patient_id (foreign key): References the patient_table to identify the

patient who booked the appointment.
• appointment_date: The date of the appointment.
• appointment_time: The time of the appointment.
• canceled: A boolean value indicating whether the appointment has been

canceled (default is FALSE).

6. availability_table:

• availability_id (primary key): A unique identifier for each availability
entry.

• doctor_id (foreign key): References the doctor_table to identify the
doctor’s availability.

• clinic_id (foreign key): References the clinic_table to identify the
clinic’s availability.

• available_date: The date on which the doctor is available.
• available_time: The time at which theHere’s the continuation of the

LaTeX code:
• available_time: The time at which the doctor is available.

7. doctor_clinic:

• doctor_id (foreign key): References the doctor_table to identify the
doctor.

• clinic_id (foreign key): References the clinic_table to identify the
clinic.

8. customer_patient:

• patient_id (foreign key): References the patient_table to identify the
patient.

• user_id (foreign key): References the user_table to identify the user
associated with the patient.

AP Clinic App Report 4

3 APP.PY

3 app.py
In this file, we make the interface of the project for user and secretary interactions
in a clinic system. The code consists of several functions and classes that handle
various actions such as user registration, login, and secretary operations.

1. Function: get_phone_number()

• This function prompts the user to enter a phone number and validates
the input using a specific pattern. It returns the phone number if it is
valid.

2. Function: get_first_name()

• The function asks the user to enter their first name and returns the input
as a string.

3. Function: get_last_name()

• This function prompts the user to enter their last name and returns the
input as the last name.

4. Function: get_password()

• The function takes user input for a password and checks if it meets specific
criteria, including the presence of lowercase and uppercase letters, digits,
and special characters. It returns the valid password entered by the user.

5. Function: get_email()

• This function prompts the user to enter an email address and validates it
using a regular expression pattern. It returns the email address if valid
or None if the user chooses not to enter an email.

6. Function: choose_user_type()

• The function prompts the user to enter their user type, specifically "Sec-
retary" or "Customer". It returns the user type.

7. Function: register_or_login(user)

• This function allows a user to either register or login. It takes a user
object as a parameter and returns the result of the registration or login
attempt.

8. Function: main()

AP Clinic App Report 5

5 CUSTOMER.PY | PATIENT.PY

• The main function handles the user and secretary interactions within
the clinic system. It starts by creating a User object and then calls the
register_or_login function to register or log in the user.

• If the user type is "Secretary," it enters a loop where the secretary can per-
form various actions related to managing a clinic, such as adding/selecting
doctors, updating the clinic profile, viewing appointments, and managing
doctor profiles.

• If the user type is "Customer," it enters a loop where the customer can
perform actions such as adding patients, selecting patients, updating pa-
tient information, managing appointments, and viewing appointment his-
tory.

Overall, this code provides an interface for users and secretaries to interact with
the clinic system. It enables user registration, login, and various operations related
to managing clinics, doctors, patients, and appointments.

Please note that the provided code is incomplete, and some variables (such as
exit in the main function) are not initialized or defined. To ensure the code runs
properly, these variables need to be appropriately handled and initialized.

4 user.py
To continue our work, we make an user class, which is responsible to login and
register in the website.

1. Function: register_user

• This function will check first if the user is already exist or not. If not,
the user will insert into the table.

2. Function: login_user

• In this function if the provided phone number is not in the table it will
print an error and otherwise the password will be checked and if correct
the user will be login and the object will return. When the app close the
user will logout.

5 customer.py | patient.py
Patient Class | Attributes:

1. __init__(self): The constructor function that initializes the attributes of a
patient object.

AP Clinic App Report 6

5 CUSTOMER.PY | PATIENT.PY

Patient Class | Methods:

1. select_patient(self, phone_number): Selects a patient from the database
based on their phone number and sets the patient’s attributes accordingly.

2. add_patient(self, first_name, last_name, phone_number, birthdate,
national_code, email, user_phone): Adds a new patient to the database
with the provided details. It checks if the patient already exists before inserting
the new record.

3. update_patient_info(self, new_phone_number=None, new_first_name=None,
new_last_name=None, new_birthdate=None, new_email=None, new_national_code=None):
Updates the patient’s information in the database with the provided new val-
ues. It checks for the existence of a patient with the new phone number before
performing the update.

4. remove_patient(self): Removes the patient from the database.

5. view_current_appointments(self): Retrieves and displays the current ap-
pointments for the patient from the database.

6. view_appointments_history(self): Retrieves and displays the appointment
history for the patient from the database.

Customer Class | Attributes:

1. __init__(self, phone_number: str): The constructor function that ini-
tializes instances of the Patient, Secretary, and Appointment classes. It es-
tablishes a database connection and retrieves the user’s information based on
their phone number.

Customer Class | Methods:

1. select_patient(self, phone_number: str): Selects a patient from the
database based on their phone number. It queries the database and sets the
patient’s information accordingly.

2. add_patient(self, first_name, last_name, phone_number, birthdate,
national_code, email): Adds a new patient to the database. It delegates
the functionality to the Patient class.

3. update_patient_info(self, new_phone_number=None, new_first_name=None,
new_last_name=None, new_email=None, new_birthday=None, new_national_code=None):
Updates the patient’s information in the database. It delegates the function-
ality to the Patient class.

4. remove_patient(self): Removes the patient from the database.

AP Clinic App Report 7

6 SECRETARY.PY | DOCTOR.PY | CLINIC.PY

5. view_current_appointments(self): Retrieves and displays the current ap-
pointments for the patient from the database. It delegates the functionality
to the Patient class.

6. view_appointments_history(self): Retrieves and displays the appointment
history for the patient from the database. It delegates the functionality to the
Patient class.

7. add_appointment(self, doctor_phone_number, clinic_name, date, time):
Adds a new appointment for the patient. It delegates the functionality to the
Appointment class.

8. cancel_appointment(self, date, time): Cancels an existing appointment
for the patient. It delegates the functionality to the Appointment class.

9. reschedule_appointment(self, old_date, old_time, new_date, new_time):
Reschedules an existing appointment for the patient. It delegates the func-
tionality to the Appointment class.

6 secretary.py | doctor.py | clinic.py
Same as the last part, here we made 3 classes to work for us to perform secretary.
To do this, first we make clinic and doctor. then connect the Secretary to them.
Each secretary connects to only one clinic but each clinic can have multiple doctors.
The secretary have the authority to add doctors and set available time for them in
this class.

1. Function: __init__

• By making an object, if the secretary is new, or there is no clinic connected
to it, it will make the object and add it to proper tables and then select
the Secretary and set it to the object. Otherwise if the secretary exist, it
will only set to the object.

2. Function: add_doctor

• In this function we add a doctor and select it. If the doctor already exist,
we only select it.

3. Function: update_doctor_profile

• Updates the doctor’s profile with the given information (new first name,
new last name, new phone number).

4. Function: view_schedule_for_doctor

AP Clinic App Report 8

7 APPOINTMENT.PY | AVAILABILITY.PY

• Retrieves the schedule for the doctor and displays it in a table format.

5. Function: edit_appointments_for_doctor

• Edits appointments for a doctor by updating the appointment’s date and
time.

6. Function: update_clinic_profile

• Updates the clinic’s profile with new information (clinic name, address,
secretary’s phone number).

7. Function: view_appointments_for_clinic

• Retrieves and displays the appointments for the clinic in a table format.

8. Function: __str__

• Returns a string representation of the object, including the clinic name
and phone number.

7 appointment.py | availability.py
We want to make two classes which add appointments for us and also check or us
that if the date is available into the calendar. At the last we can use this classes to
get data about appointments. Both the customer and secretary will use it.

1. Function: add_appointment

• Here it will take the doctor phone number and clinic name and patient
phone number to add the date and time to them and insert the data into
calendar.

2. Function: cancel_appointment

• By giving the needed information to it, if the appointment exist it will
canceled and the cancel column will turn to True. It also change the
reserved column in the availability table to False too.

3. Function: reschedule_appointment

• This will change the appointment date and its related fileds will fix in
both availability table and calendar table.

4. Function: add_availability

• It will add some availability to the table.

AP Clinic App Report 9

7 APPOINTMENT.PY | AVAILABILITY.PY

5. Function: get_available_times

• This function will return all the available date and times.

AP Clinic App Report 10

	Introduction
	DataBase
	app.py
	user.py
	customer.py | patient.py
	secretary.py | doctor.py | clinic.py
	appointment.py | availability.py

